
Professor of Pure Mathematics
Research Interests: Extremal Combinatorics, Ramsey Theory
Publications
A Note on Transitive Union-Closed Families
          – Electronic Journal of Combinatorics  
  
          (2021)  
  
          28,   
  
          ARTN P2.3  
  
          (doi: 10.37236/9956)  
  
  Product-free sets in the free semigroup
          – European Journal of Combinatorics  
  
          (2020)  
  
          83,   
  
          103003  
  
          (doi: 10.1016/j.ejc.2019.103003)  
  
  Infinite Monochromatic Sumsets for Colourings of the Reals.
          – Proceedings of the American Mathematical Society  
  
          (2019)  
  
          147,   
  
          2673  
  
          (doi: 10.1090/proc/14431)  
  
  RANDOM GEOMETRIC GRAPHS AND ISOMETRIES OF NORMED SPACES
          – TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY  
  
          (2018)  
  
          370,   
  
          7361  
  
          (doi: 10.1090/tran/7420)  
  
  An isoperimetric inequality for antipodal subsets of the discrete cube
          – European Journal of Combinatorics  
  
          (2018)  
  
          70,   
  
          149  
  
          (doi: 10.1016/j.ejc.2017.12.003)  
  
  Improved bounds for the graham-pollak problem for hypergraphs
          – Electronic Journal of Combinatorics  
  
          (2018)  
  
          25,   
  
          ARTN P1.4  
  
          (doi: 10.37236/7206)  
  
  Decomposing the complete r-graph
          – Journal of Combinatorial Theory Series A  
  
          (2017)  
  
          154,   
  
          21  
  
          (doi: 10.1016/j.jcta.2017.08.008)  
  
  Tiling the Boolean lattice with copies of a poset
          – Electronic Notes in Discrete Mathematics  
  
          (2017)  
  
          61,   
  
          535  
  
          (doi: 10.1016/j.endm.2017.07.004)  
  
  Transitive Avoidance Games
          – Electronic Journal of Combinatorics  
  
          (2017)  
  
          24,   
  
          ARTN P1.61  
  
          (doi: 10.37236/6299)  
  
  Sets partition regular for $n$ equations need not solve $n+1$
          – Proceedings of the London Mathematical Society  
  
          (2016)  
  
          73,   
  
          481  
  
          (doi: 10.1112/plms/s3-73.3.481)  
  
  - 1 of 10
